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Recalling Borel sets and functions

Borel sets

Definition 1.

Let (X , τ) be a topological space. The class of Borel sets of X , denoted with B(X ), is
the σ-algebra generated by the open sets of X , i.e. the smallest σ-algebra containing the
topology.

Definition 2.

Given two topological spaces X ,Y and a function f : X → Y , we say that f is a Borel
function or Borel measurable if f −1(U) ∈ B(X ) for every open U ⊆ Y .
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Recalling Borel sets and functions

Borel Hierarchy

Take (X , τ) metrizable, we can stratify the Borel sets of X into classes Σ0
ξ,Π

0
ξ,∆

0
ξ (for ξ

countable ordinal) by inductively iterating countable unions and taking complements
starting from the open sets.
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Definition 3.

Given two spaces X ,Y , and a countable ordinal α > 1, we say that a function f : X → Y
is Σ0

α-measurable if f −1(U) ∈ Σ0
α(X ) for every open U ⊆ Y .

Lorenzo Notaro (Univ. Torino) Tree-representations for Borel functions February 4, 2022 3 / 29



Recalling Borel sets and functions

Borel Hierarchy

Take (X , τ) metrizable, we can stratify the Borel sets of X into classes Σ0
ξ,Π

0
ξ,∆

0
ξ (for ξ

countable ordinal) by inductively iterating countable unions and taking complements
starting from the open sets.

∆0
1

Σ0
1

Π0
1

∆0
2

Σ0
2

Π0
2

. . . ∆0
ω

Σ0
ω

Π0
ω

∆0
3

Σ0
3

Π0
3

open

closed Gδ

Fσ Gδσ

Fσδ

. . .

Definition 3.

Given two spaces X ,Y , and a countable ordinal α > 1, we say that a function f : X → Y
is Σ0

α-measurable if f −1(U) ∈ Σ0
α(X ) for every open U ⊆ Y .

Lorenzo Notaro (Univ. Torino) Tree-representations for Borel functions February 4, 2022 3 / 29



Recalling Borel sets and functions

Baire functions

Definition 4.

A function is Baire class 1 if it is the pointwise limit of a sequence of continuous
functions.

Definition 5.

For all α > 1 countable ordinals, we can define recursively the Baire class α to be the
class of functions which are pointwise limits of sequences of Baire class < α functions.

Theorem 6 (Lebesgue, Hausdorff, Banach).

Let X ,Y be separable metrizable spaces, with X zero-dimensional. Then for 1 ≤ α < ω1

f : X → Y is Baire class α if and only if it is Σ0
α+1-measurable.
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Representing Borel functions

Trees

Definition 7.

A Tree on a set A is a subset T ⊆ A<ω = {⟨a0, a1, a2, . . . , an−1⟩ | n ∈ ω ∧ ∀i < n ai ∈ A}
closed under initial segments. The body of a tree T is the set if its branches:

[T ] = {(an)n∈ω ∈ Aω | ⟨a0, a1, . . . , an⟩ ∈ T for all n ∈ ω}

.

∅

⟨0⟩

⟨1⟩

⟨n⟩

. . .

. . .

⟨1, 0⟩

⟨1, 2⟩

⟨1, 2, 0⟩

⟨1, 2, 1⟩

[T ]. . .
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Representing Borel functions

Topologies on Trees

We work with trees on countable sets, and there are two topologies on the set of trees
Tr(A) we are interested in:

the topology τS generated by the sets {T tree on A | s ∈ T} with s ∈ A<ω.

the topology τC generated by the sets {T tree on A | s ∈ T}, {T tree on A | s ̸∈ T}
with s ∈ A<ω.

Remark 8.

1 τS ⊆ τC .

2 τC ⊆ Σ0
2(τS).

3 (Tr(A), τC ) ∼= 2ω.

4 τS is the Scott topology of (Tr(A),⊆).
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Representing Borel functions

Game for Borel functions

Definition 9 (Borel Game).

Given a function f : ωω → ωω we define the following perfect information two players
infinite game GB(f ):
At each round n ∈ ω, Player I plays a natural number xn ∈ ω, and then Player II plays a
finite tree Tn on ω × ω (i.e. the set of couples of natural numbers) s.t. Tn ⊆ Tn+1.

A
partial history (or play) of the game looks like this:

(x0,T0, x1,T1, x2,T2, . . . , xn,Tn)

So at the end of the game Player I has produced an infinite sequence x ∈ ωω whilst

Player II has produced a tree T =
⋃
n∈ω

Tn

We say that Player II wins iff T has a unique branch and Proj(branch of T ) = f (x).
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Representing Borel functions

Strategies for Player II in GB(f )

Strategies for Player II in GB

Given a strategy σ for Player II in GB(f ) then the following map is continuous

φσ : ωω −→ (Tr(ω × ω), τS)

x 7−→
⋃
n∈ω

σ(x ↾ n)

Conversely, given a continuous function φ : ωω → (Tr(ω × ω), τS), there exists a strategy
σφ for Player II such that ⋃

n∈ω

σφ(x ↾ n) = φ(x) for all x ∈ ωω
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Representing Borel functions

Borel Representation result

Theorem 10 ([Semmes, 2009]).

A function f : ωω → ωω is Borel measurable if and only if Player II has a winning
strategy in GB(f ).

Theorem 11 (Louveau, 2009).

A function f : ωω → ωω is Borel measurable if and only if there exists a continuous
function φ : ωω → (Tr(ω × ω), τC ) such that, for all x ∈ ωω, φ(x) has a unique branch
and Proj(branch of φ(x)) = f (x).

The map φ of Theorem 11 is called a tree-representation for the function f , and a
function admitting such map is called tree-representable.
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Representing Borel functions

Proof(s) of Louveau’s theorem

Proof of Louveau’s theorem

(⇐) : Given a function f : ωω → ωω with a tree-representation
φ : ωω → (Tr(ω × ω), τC ), and an open set U ⊆ ωω we have

f −1(U) = {x ∈ ωω | ∃y , z ∈ ωω (y ∈ U ∧ ∀n ∈ ω ⟨y ↾ n, z ↾ n⟩ ∈ φ(x))}
= {x ∈ ωω | ∀y , z ∈ ωω (y ∈ U ∨ ∃n ∈ ω ⟨y ↾ n, z ↾ n⟩ ̸∈ φ(x))}

Hence f −1(U) ∈ ∆1
1(ω

ω), and by Lusin’s separation theorem it is Borel.
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Representing Borel functions

Proof of Louveau’s theorem

(⇒) : Given a Borel function f : ωω → ωω, there is a zero-dimensional Polish topology τ ′

on ωω which refines the usual product topology τ and such that
f ◦ id : (ωω, τ ′) → (ωω, τ) is continuous, with id : (ωω, τ ′) → (ωω, τ) being the identity.

As τ ′ is Polish zero-dimensional, there exists a closed F ⊆ ωω which is homeomorphic to
(ωω, τ ′) via a map g . Consider the map

h : ωω −→ ωω × ωω

x 7−→ (f (x), g ◦ id−1(x))

The graph of h is closed as

graph(h) = {(x , y , z) ∈ (ωω)3 | y = f ◦ id ◦ g−1(z), x = id ◦ g−1(z)}

therefore there is a pruned tree T on ω3 such that graph(h) = [T ]. Now we can set

φ : ωω −→ (Tr(ω × ω), τC )

x 7−→ {s ∈ (ω × ω)n | n ∈ ω and ⟨x ↾ n, s⟩ ∈ T}

And φ is the tree-representation we were looking for.
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Representing Borel functions

Ideas for another proof.

(⇒) : We can prove this direction also by induction on the Baire hierarchy, by showing
that the pointwise limit of a sequence of tree-representable functions is itself
tree-representable.

Indeed as every continuous function is tree-representable by a map that ranges among
linear trees, we would be done.
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Finer Representation results

Finer results

Given a Borel function f : ωω → ωω we now know that it is tree-representable, but how
”complicated” are the trees in the range of the tree-representation?

Intuitive answer

The more complex the function f , the more complex the trees in the representation
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Finer Representation results

Rank of a tree

Given a tree T that does not have infinite branches (we say that T is well-founded) then
we can define recursively the usual rank : T → Ord as follows:

rankT (s) =

{
sup{rankT (s⌢a) + 1 | s⌢a ∈ T} if s is not terminal

0 otherwise

where we call a node s ∈ T terminal in T if there is no a such that s⌢a ∈ T .

We can define the rank of a well-founded tree T as

rank(T ) = rankT (∅) + 1
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Finer Representation results

Rank⋆ of a tree

Given a tree T and a node s ∈ T , define T ⋆
s = T \ (s⌢(T ↾ s)).

Suppose T ⋆
s is well-founded, then we set

rank⋆T (s) = rank(T ⋆
s ).

∅
s

T ⋆
s

bT
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Finer Representation results

Representing Baire class α functions

Stratifying UB

Using the rankT and rank⋆T functions, we can define subclasses UBα for each α countable
ordinal, that stratify the class of trees having a unique branch

UB0 ⊂ UB1 ⊂ · · · ⊂ UBα ⊂ . . .

As we climb up the hierarchy we get trees that branch out more and more off the unique
branch.

Theorem 12 (Louveau, Semmes 2009).

For any α < ω1, a function f : ωω → ωω is Baire class α if and only if there exists a
continuous function φ : ωω → (Tr(ω × ω), τC ) such that, for all x ∈ ωω, φ(x) is in UBα

and Proj(branch of φ(x)) = f (x).
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Finer Representation results

Representating Σ0
λ-measurable functions

We can define new subclasses UBl
λ ⊂ UBλ for each λ countable limit that allows to

capture the class of Σ0
λ-measurable functions.

Theorem 13 (Louveau, 2009).

For any countable limit ordinal λ, a function f : ωω → ωω is Σ0
λ-measurable if and only if

there exists a continuous function φ : ωω → (Tr(ω × ω), τC ) such that, for all x ∈ ωω,
φ(x) is in UBl

λ and Proj(branch of φ(x)) = f (x).
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Finer Representation results

Additional Representation results

What happens if we work with trees on ω (not ω × ω)?

Definition 14.

Given a function f : ωω → ωω, we define the modified Borel game Gw
B (f ) as the game in

which Player I constructs a sequence x ∈ ωω and Player II constructs a tree T on ω and
Player II wins the game if T has a unique branch and its branch is f (x).

Proposition 15 (N.).

Given a function f : ωω → ωω, Player II has a winning strategy in Gw
B (f ) if and only if

graph(f ) ∈ Π0
2.

Proposition 16 (N.).

Given a Borel function f : ωω → ωω, if graph(f ) ̸∈ Π0
2 then Player I has a winning

strategy in Gw
B (f ).
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Finer Representation results

Additional Representation results

Sketch of proof for Proposition 15

(⇐)

Fix a decreasing sequence of open sets (Un)n∈ω s.t. graph(f ) =
⋂
n∈ω

Un.

Consider the strategy, which we call σ, for Player II according to which, at round
i ∈ ω, if Player I has played s ∈ ωi , Player II adds to his tree the sequences t ∈ ω<ω

s.t. max{n ∈ ω | Ns × Nt ⊆ Un} > max{n ∈ ω | Ns × Nt↾|t|−1 ⊆ Un}.
Check that

y ∈

[⋃
n∈ω

σ(x ↾ n)

]
⇐⇒ ∀n∃m0∃m1 (Nx↾m0 × Ny↾m1 ⊆ Un)

⇐⇒ ⟨x , y⟩ ∈ graph(f )

(⇒): Fix a winning strategy σ for Player II in Gw
B (f ), check that

graph(f ) =
⋂
n∈ω

⋃
{Ns × Nt | t ∈ ωn and s ∈ ω<ω s.t. t ∈ σ(s)}

Lorenzo Notaro (Univ. Torino) Tree-representations for Borel functions February 4, 2022 20 / 29



Finer Representation results

Additional Representation results

Sketch of proof for Proposition 15

(⇐)

Fix a decreasing sequence of open sets (Un)n∈ω s.t. graph(f ) =
⋂
n∈ω

Un.

Consider the strategy, which we call σ, for Player II according to which, at round
i ∈ ω, if Player I has played s ∈ ωi , Player II adds to his tree the sequences t ∈ ω<ω

s.t. max{n ∈ ω | Ns × Nt ⊆ Un} > max{n ∈ ω | Ns × Nt↾|t|−1 ⊆ Un}.
Check that

y ∈

[⋃
n∈ω

σ(x ↾ n)

]
⇐⇒ ∀n∃m0∃m1 (Nx↾m0 × Ny↾m1 ⊆ Un)

⇐⇒ ⟨x , y⟩ ∈ graph(f )

(⇒): Fix a winning strategy σ for Player II in Gw
B (f ), check that

graph(f ) =
⋂
n∈ω

⋃
{Ns × Nt | t ∈ ωn and s ∈ ω<ω s.t. t ∈ σ(s)}

Lorenzo Notaro (Univ. Torino) Tree-representations for Borel functions February 4, 2022 20 / 29



Finer Representation results

Additional Representation results

Sketch of proof for Proposition 15

(⇐)

Fix a decreasing sequence of open sets (Un)n∈ω s.t. graph(f ) =
⋂
n∈ω

Un.

Consider the strategy, which we call σ, for Player II according to which, at round
i ∈ ω, if Player I has played s ∈ ωi , Player II adds to his tree the sequences t ∈ ω<ω

s.t. max{n ∈ ω | Ns × Nt ⊆ Un} > max{n ∈ ω | Ns × Nt↾|t|−1 ⊆ Un}.

Check that

y ∈

[⋃
n∈ω

σ(x ↾ n)

]
⇐⇒ ∀n∃m0∃m1 (Nx↾m0 × Ny↾m1 ⊆ Un)

⇐⇒ ⟨x , y⟩ ∈ graph(f )

(⇒): Fix a winning strategy σ for Player II in Gw
B (f ), check that

graph(f ) =
⋂
n∈ω

⋃
{Ns × Nt | t ∈ ωn and s ∈ ω<ω s.t. t ∈ σ(s)}

Lorenzo Notaro (Univ. Torino) Tree-representations for Borel functions February 4, 2022 20 / 29



Finer Representation results

Additional Representation results

Sketch of proof for Proposition 15

(⇐)

Fix a decreasing sequence of open sets (Un)n∈ω s.t. graph(f ) =
⋂
n∈ω

Un.

Consider the strategy, which we call σ, for Player II according to which, at round
i ∈ ω, if Player I has played s ∈ ωi , Player II adds to his tree the sequences t ∈ ω<ω

s.t. max{n ∈ ω | Ns × Nt ⊆ Un} > max{n ∈ ω | Ns × Nt↾|t|−1 ⊆ Un}.
Check that

y ∈

[⋃
n∈ω

σ(x ↾ n)

]
⇐⇒ ∀n∃m0∃m1 (Nx↾m0 × Ny↾m1 ⊆ Un)

⇐⇒ ⟨x , y⟩ ∈ graph(f )

(⇒): Fix a winning strategy σ for Player II in Gw
B (f ), check that

graph(f ) =
⋂
n∈ω

⋃
{Ns × Nt | t ∈ ωn and s ∈ ω<ω s.t. t ∈ σ(s)}

Lorenzo Notaro (Univ. Torino) Tree-representations for Borel functions February 4, 2022 20 / 29



Finer Representation results

Additional Representation results

Sketch of proof for Proposition 15

(⇐)

Fix a decreasing sequence of open sets (Un)n∈ω s.t. graph(f ) =
⋂
n∈ω

Un.

Consider the strategy, which we call σ, for Player II according to which, at round
i ∈ ω, if Player I has played s ∈ ωi , Player II adds to his tree the sequences t ∈ ω<ω

s.t. max{n ∈ ω | Ns × Nt ⊆ Un} > max{n ∈ ω | Ns × Nt↾|t|−1 ⊆ Un}.
Check that

y ∈

[⋃
n∈ω

σ(x ↾ n)

]
⇐⇒ ∀n∃m0∃m1 (Nx↾m0 × Ny↾m1 ⊆ Un)

⇐⇒ ⟨x , y⟩ ∈ graph(f )

(⇒): Fix a winning strategy σ for Player II in Gw
B (f ), check that

graph(f ) =
⋂
n∈ω

⋃
{Ns × Nt | t ∈ ωn and s ∈ ω<ω s.t. t ∈ σ(s)}

Lorenzo Notaro (Univ. Torino) Tree-representations for Borel functions February 4, 2022 20 / 29



Finer Representation results

Additional Representation results

If we modify accordingly the Louveau’s definition of tree-representable function with end
up characterizing closed graph functions.

Proposition 17 (N.).

Given a function f : ωω → ωω, its graph is closed if and only if there exists a continuous
function φ : ωω → (Tr(ω), τC ) such that, for all x ∈ ωω, φ(x) has a unique branch and
its branch is f (x).
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Concluding remarks

Other reduction games

From the Borel game GB(f ) we can recover other similar games (reduction games) that
have been studied, by adding contraints on the complexity of the trees played by Player II.

Definition 18.

Given G ,G ′ perfect information two players infinite games, we say that G ,G ′ are
equivalent if given a winning strategy for Player I (resp. II) in G we can define a winning
strategy for Player I (resp. II) in G ′ and vice versa.

Proposition 19 (Folklore).

The Wadge game GW (f ), Duparc’s eraser game Ge(f ) and Van Wesep’s backtrack game
Gbt(f ) are equivalent to the Borel game GB(f ) once we require Player II to play, in order
to win, a tree respectively linear, in UB1 and in a subclass of UB1.

GB(f ) where Player II plays a tree in

GW (f ) UB0

Ge(f ) UB1

Gbt(f ) UB−
1
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Concluding remarks

Determinacy

Definition 20.

A two player perfect information infinite game is determined if any of the two players has
a winning strategy.

Theorem 21 ([Carroy, 2014]).

For all functions f : ωω → ωω, the Wadge GW(f ), the eraser game Ge(f ) and the
backtrack game Gbt(f ) are determined.

The proof of this result does not appeal to Martin’s Borel determinacy.
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Concluding remarks

Is the Borel Game GB(f ) determined?

Theorem 22 (N.).

Given a subset A ⊆ ωω, if Player I has a winning strategy in GB(1A) then A contains a
perfect set.

where the function 1A is the function

1A : ωω −→ ωω

x 7−→

{
⟨1⟩ω if x ∈ A

⟨0⟩ω otherwise

Corollary 23.

The determinacy of GB(f ) for all f : ωω → ωω implies that every non-Borel subset of the
Baire space has the perfect set property.

Corollary 24.

(ZFC) There exists a function f : ωω → ωω such that GB(f ) is undetermined.
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Concluding remarks

On Borel reducibility

Definition 25.

For A,B ⊆ ωω, the game GB(A,B) is a game with the same rules as the Borel game, but
Player II wins if and only if

x ∈ A ⇐⇒ Proj(unique branch of T ) ∈ B

where x is the sequence played by Player I and T is the tree played by Player II.

Remark.

Given A,B ⊆ ωω, Player II has a winning strategy in GB(A,B) if and only if A ≤B B, i.e.
there exists a Borel function f : ωω → ωω such that f −1(B) = A.
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Concluding remarks

On Borel reducibility

ADB

We denote with ADB the statement “For all A,B ⊆ ωω, the game GB(A,B) is
determined”.

ADB implies the following statement:

for all A,B ⊆ ωω A ≤B B or B ≤B ¬A

which is called SLOB and is sufficient (in (ZF + DC(ωω) + BP)) to prove that ≤B is
well-founded and the structure of its equivalence classes is isomorphic to the one for the
Wadge (continuous) reduction (see [Andretta and Martin, 2003]).
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Concluding remarks

Conclusion

Open question.

What is the consistency strength of “Det(GB(f )) for all f : ωω → ωω”? What is the
relationship of such statement with other known determinacy statements?

Open question.

What is the consistency strength of ADB?

Open question (see [Andretta, 2006]).

(ZF + DC(ωω) + BP) Does SLOB ⇐⇒ ADB ⇐⇒ SLOW hold?

Thank you for the attention
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