Tree-representations for Borel functions

Lorenzo Notaro

Università di Torino, Dipartimento di Matematica "G. Peano"

Winter School in Abstract Analysis 2022 Section Set Theory & Topology

February 4, 2022

Lorenzo Notaro (Univ. Torino)

Tree-representations for Borel functions

February 4, 2022

< □ > < 同 > < 回 > < 回 >

Borel sets

Definition 1.

Let (X, τ) be a topological space. The class of *Borel sets* of *X*, denoted with $\mathcal{B}(X)$, is the σ -algebra generated by the open sets of *X*, i.e. the smallest σ -algebra containing the topology.

Definition 2.

Given two topological spaces X, Y and a function $f : X \to Y$, we say that f is a Borel function or Borel measurable if $f^{-1}(U) \in \mathcal{B}(X)$ for every open $U \subseteq Y$.

(日) (四) (日) (日) (日)

Borel Hierarchy

Take (X, τ) metrizable, we can stratify the Borel sets of X into classes $\Sigma_{\xi}^{0}, \Pi_{\xi}^{0}, \Delta_{\xi}^{0}$ (for ξ countable ordinal) by inductively iterating countable unions and taking complements starting from the open sets.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Borel Hierarchy

Take (X, τ) metrizable, we can stratify the Borel sets of X into classes $\Sigma_{\xi}^{0}, \Pi_{\xi}^{0}, \Delta_{\xi}^{0}$ (for ξ countable ordinal) by inductively iterating countable unions and taking complements starting from the open sets.

Definition 3.

Given two spaces X, Y, and a countable ordinal $\alpha > 1$, we say that a function $f : X \to Y$ is Σ_{α}^{0} -measurable if $f^{-1}(U) \in \Sigma_{\alpha}^{0}(X)$ for every open $U \subseteq Y$.

30

< □ > < 同 >

Baire functions

Definition 4.

A function is Baire class 1 if it is the pointwise limit of a sequence of continuous functions.

イロト イポト イヨト イヨト

Baire functions

Definition 4.

A function is Baire class 1 if it is the pointwise limit of a sequence of continuous functions.

Definition 5.

For all $\alpha > 1$ countable ordinals, we can define recursively the Baire class α to be the class of functions which are pointwise limits of sequences of Baire class $< \alpha$ functions.

(日) (四) (日) (日) (日)

Baire functions

Definition 4.

A function is Baire class 1 if it is the pointwise limit of a sequence of continuous functions.

Definition 5.

For all $\alpha > 1$ countable ordinals, we can define recursively the Baire class α to be the class of functions which are pointwise limits of sequences of Baire class $< \alpha$ functions.

Theorem 6 (Lebesgue, Hausdorff, Banach).

Let X, Y be separable metrizable spaces, with X zero-dimensional. Then for $1 \le \alpha < \omega_1$ f : X \rightarrow Y is Baire class α if and only if it is $\Sigma_{\alpha+1}^0$ -measurable.

(日) (四) (日) (日) (日)

Trees

Definition 7.

A Tree on a set A is a subset $T \subseteq A^{<\omega} = \{ \langle a_0, a_1, a_2, \dots, a_{n-1} \rangle \mid n \in \omega \land \forall i < n \ a_i \in A \}$ closed under initial segments. The *body* of a tree T is the set if its *branches*:

$$[T] = \{(a_n)_{n \in \omega} \in A^{\omega} \mid \langle a_0, a_1, \dots, a_n \rangle \in T \text{ for all } n \in \omega\}$$

We work with trees on countable sets, and there are two topologies on the set of trees Tr(A) we are interested in:

< □ > < □ > < □ > < □ > < □ >

э

We work with trees on countable sets, and there are two topologies on the set of trees Tr(A) we are interested in:

• the topology τ_S generated by the sets $\{T \text{ tree on } A \mid s \in T\}$ with $s \in A^{<\omega}$.

イロト イポト イヨト イヨト

We work with trees on countable sets, and there are two topologies on the set of trees Tr(A) we are interested in:

- the topology τ_S generated by the sets $\{T \text{ tree on } A \mid s \in T\}$ with $s \in A^{<\omega}$.
- the topology τ_C generated by the sets {T tree on A | s ∈ T}, {T tree on A | s ∉ T} with s ∈ A^{<ω}.

(日) (四) (日) (日) (日)

We work with trees on countable sets, and there are two topologies on the set of trees Tr(A) we are interested in:

- the topology τ_S generated by the sets $\{T \text{ tree on } A \mid s \in T\}$ with $s \in A^{\leq \omega}$.
- the topology τ_C generated by the sets {T tree on A | s ∈ T}, {T tree on A | s ∉ T} with s ∈ A^{<ω}.

Remark 8.

- $\mathbf{2} \ \tau_C \subseteq \mathbf{\Sigma}_2^0(\tau_S).$
- $(\operatorname{Tr}(A), \tau_C) \cong 2^{\omega}.$
- τ_S is the Scott topology of $(Tr(A), \subseteq)$.

Lorenzo Notaro ((Univ. Torino))
------------------	----------------	---

< ロ > < 同 > < 回 > < 回 >

Game for Borel functions

Definition 9 (Borel Game).

Given a function $f: \omega^{\omega} \to \omega^{\omega}$ we define the following perfect information two players infinite game $G_{\mathbf{B}}(f)$: At each round $n \in \omega$, Player I plays a natural number $x_n \in \omega$, and then Player II plays a finite tree T_n on $\omega \times \omega$ (i.e. the set of couples of natural numbers) s.t. $T_n \subseteq T_{n+1}$.

4 D K 4 B K 4 B K 4

Game for Borel functions

Definition 9 (Borel Game).

Given a function $f: \omega^{\omega} \to \omega^{\omega}$ we define the following perfect information two players infinite game $G_{\mathbf{B}}(f)$: At each round $n \in \omega$, Player I plays a natural number $x_n \in \omega$, and then Player II plays a

finite tree T_n on $\omega \times \omega$ (i.e. the set of couples of natural numbers) s.t. $T_n \subseteq T_{n+1}$. A partial history (or play) of the game looks like this:

$$(x_0, T_0, x_1, T_1, x_2, T_2, \ldots, x_n, T_n)$$

So at the end of the game Player I has produced an infinite sequence $x \in \omega^{\omega}$ whilst Player II has produced a tree $T = \bigcup_{n \in \omega} T_n$

< ロ > < 同 > < 回 > < 回 >

Game for Borel functions

Definition 9 (Borel Game).

Given a function $f: \omega^{\omega} \to \omega^{\omega}$ we define the following perfect information two players infinite game $G_{\mathbf{B}}(f)$: At each round $n \in \omega$, Player I plays a natural number $x_n \in \omega$, and then Player II plays a finite tree T_n on $\omega \times \omega$ (i.e. the set of couples of natural numbers) s.t. $T_n \subseteq T_{n+1}$. A partial history (or play) of the game looks like this:

$$(x_0, T_0, x_1, T_1, x_2, T_2, \ldots, x_n, T_n)$$

So at the end of the game Player I has produced an infinite sequence $x \in \omega^{\omega}$ whilst Player II has produced a tree $T = \bigcup_{n \in \omega} T_n$

We say that Player II wins iff T has a unique branch and Proj(branch of T) = f(x).

イロト イポト イヨト イヨト

$$f: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$$

I:

II:

・ロト ・四ト ・ヨト ・ヨト

æ

$$f: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$$

I: 3

II:

▲□ → ▲圖 → ▲ 臣 → ▲ 臣 →

æ

$$f: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$$

I: 3

Lorenzo	Notaro I	(Univ.	Torino)
---------	----------	--------	--------	---

・ロト ・四ト ・ヨト ・ヨト

э.

$$f: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$$

I: 3 10

Lorenzo Notaro (Univ. Torino)

・ロト ・四ト ・ヨト ・ヨト

э.

I: 3 10

Lorenzo		

メロト スピト メヨト メヨト

I: 3 10 4

Lorenzo N	lotaro ((Univ.	Torino)
-----------	----------	--------	--------	---

メロト スピト メヨト メヨト

I: 3 10 4

イロン イロン イヨン イヨン

イロン イロン イヨン イヨン

I: 3 10 4 56

< □ > < □ > < □ > < □ > < □ >

< □ > < □ > < □ > < □ > < □ >

イロン イロン イヨン イヨン

< □ > < □ > < □ > < □ > < □ >

< □ > < □ > < □ > < □ > < □ >

Univ. 1

< □ > < □ > < □ > < □ > < □ >

Strategies for Player II in $G_{B}(f)$

Strategies for Player II in GB

Given a strategy σ for Player II in $G_B(f)$ then the following map is continuous

$$\varphi_{\sigma}: \omega^{\omega} \longrightarrow (\mathsf{Tr}(\omega \times \omega), \tau_{\mathsf{S}})$$
$$x \longmapsto \bigcup_{n \in \omega} \sigma(x \upharpoonright n)$$

)
--	---

イロト イヨト イヨト

Strategies for Player II in $G_{B}(f)$

Strategies for Player II in GB

Given a strategy σ for Player II in $G_{\rm B}(f)$ then the following map is continuous

$$\varphi_{\sigma}: \omega^{\omega} \longrightarrow (\operatorname{Tr}(\omega \times \omega), \tau_{\mathcal{S}})$$
 $x \longmapsto \bigcup_{n \in \omega} \sigma(x \upharpoonright n)$

Conversely, given a continuous function $\varphi: \omega^{\omega} \to (\operatorname{Tr}(\omega \times \omega), \tau_S)$, there exists a strategy σ_{φ} for Player II such that

$$\bigcup_{n\in\omega}\sigma_{\varphi}(x\restriction n)=\varphi(x)\quad\text{for all }x\in\omega^{\omega}$$

イロト イヨト イヨト

Borel Representation result

Theorem 10 ([Semmes, 2009]).

A function $f: \omega^{\omega} \to \omega^{\omega}$ is Borel measurable if and only if Player II has a winning strategy in $G_B(f)$.

Lorenzo	Notaro	(Univ.)	Torino)
---------	--------	----------	--------	---

< □ > < □ > < □ > < □ > < □ >

Borel Representation result

Theorem 10 ([Semmes, 2009]).

A function $f: \omega^{\omega} \to \omega^{\omega}$ is Borel measurable if and only if Player II has a winning strategy in $G_B(f)$.

Theorem 11 (Louveau, 2009).

A function $f: \omega^{\omega} \to \omega^{\omega}$ is Borel measurable if and only if there exists a continuous function $\varphi: \omega^{\omega} \to (Tr(\omega \times \omega), \tau_{C})$ such that, for all $x \in \omega^{\omega}$, $\varphi(x)$ has a unique branch and Proj(branch of $\varphi(x)$) = f(x).

The map φ of Theorem 11 is called a *tree-representation* for the function f, and a function admitting such map is called *tree-representable*.

イロト イポト イヨト イヨト

Proof(s) of Louveau's theorem

Proof of Louveau's theorem

 (\Leftarrow) : Given a function $f: \omega^{\omega} \to \omega^{\omega}$ with a tree-representation $\varphi: \omega^{\omega} \to (\operatorname{Tr}(\omega \times \omega), \tau_{\mathcal{C}})$, and an open set $U \subseteq \omega^{\omega}$ we have

$$\begin{split} f^{-1}(U) &= \{x \in \omega^{\omega} \mid \exists y, z \in \omega^{\omega} \ (y \in U \land \forall n \in \omega \ \langle y \upharpoonright n, z \upharpoonright n \rangle \in \varphi(x))\} \\ &= \{x \in \omega^{\omega} \mid \forall y, z \in \omega^{\omega} \ (y \in U \lor \exists n \in \omega \ \langle y \upharpoonright n, z \upharpoonright n \rangle \notin \varphi(x))\} \end{split}$$

Hence $f^{-1}(U) \in \mathbf{\Delta}_1^1(\omega^{\omega})$, and by Lusin's separation theorem it is Borel.

(日) (四) (日) (日) (日)

Proof of Louveau's theorem

 (\Rightarrow) : Given a Borel function $f: \omega^{\omega} \to \omega^{\omega}$, there is a zero-dimensional Polish topology τ' on ω^{ω} which refines the usual product topology τ and such that $f \circ id: (\omega^{\omega}, \tau') \to (\omega^{\omega}, \tau)$ is continuous, with $id: (\omega^{\omega}, \tau') \to (\omega^{\omega}, \tau)$ being the identity.

Lorenzo Notaro	(Univ. Torino)	Tre
----------------	---------------	---	-----

Proof of Louveau's theorem

 (\Rightarrow) : Given a Borel function $f: \omega^{\omega} \to \omega^{\omega}$, there is a zero-dimensional Polish topology τ' on ω^{ω} which refines the usual product topology τ and such that $f \circ id: (\omega^{\omega}, \tau') \to (\omega^{\omega}, \tau)$ is continuous, with $id: (\omega^{\omega}, \tau') \to (\omega^{\omega}, \tau)$ being the identity. As τ' is Polish zero-dimensional, there exists a closed $F \subseteq \omega^{\omega}$ which is homeomorphic to (ω^{ω}, τ') via a map g. Consider the map

$$h: \omega^{\omega} \longrightarrow \omega^{\omega} \times \omega^{\omega}$$

 $x \longmapsto (f(x), g \circ id^{-1}(x))$

The graph of h is closed as

$$graph(h) = \{(x, y, z) \in (\omega^{\omega})^3 \mid y = f \circ id \circ g^{-1}(z), \ x = id \circ g^{-1}(z)\}$$

イロト イヨト イヨト イヨト

Proof of Louveau's theorem

 (\Rightarrow) : Given a Borel function $f: \omega^{\omega} \to \omega^{\omega}$, there is a zero-dimensional Polish topology τ' on ω^{ω} which refines the usual product topology τ and such that $f \circ id: (\omega^{\omega}, \tau') \to (\omega^{\omega}, \tau)$ is continuous, with $id: (\omega^{\omega}, \tau') \to (\omega^{\omega}, \tau)$ being the identity. As τ' is Polish zero-dimensional, there exists a closed $F \subseteq \omega^{\omega}$ which is homeomorphic to (ω^{ω}, τ') via a map g. Consider the map

$$h: \omega^{\omega} \longrightarrow \omega^{\omega} \times \omega^{\omega}$$

 $x \longmapsto (f(x), g \circ id^{-1}(x))$

The graph of h is closed as

$$graph(h) = \{(x, y, z) \in (\omega^{\omega})^3 \mid y = f \circ id \circ g^{-1}(z), x = id \circ g^{-1}(z)\}$$

therefore there is a pruned tree T on ω^3 such that graph(h) = [T]. Now we can set

$$\begin{split} \varphi : \omega^{\omega} &\longrightarrow (\mathsf{Tr}(\omega \times \omega), \tau_{\mathcal{C}}) \\ x &\longmapsto \{s \in (\omega \times \omega)^{n} \mid n \in \omega \text{ and } \langle x \upharpoonright n, s \rangle \in \mathcal{T}\} \end{split}$$

And φ is the tree-representation we were looking for.

Lorenzo Notaro (Univ. Torino)

< ロ > < 同 > < 三 > < 三 >

Ideas for another proof.

 (\Rightarrow) : We can prove this direction also by induction on the Baire hierarchy, by showing that the pointwise limit of a sequence of tree-representable functions is itself tree-representable.

• • • • • • • • • • •

Ideas for another proof.

 (\Rightarrow) : We can prove this direction also by induction on the Baire hierarchy, by showing that the pointwise limit of a sequence of tree-representable functions is itself tree-representable.

Indeed as every continuous function is tree-representable by a map that ranges among *linear* trees, we would be done.

Finer results

Given a Borel function $f: \omega^{\omega} \to \omega^{\omega}$ we now know that it is tree-representable, but how "complicated" are the trees in the range of the tree-representation?

< □ > < □ > < □ > < □ > < □ >

Finer results

Given a Borel function $f: \omega^{\omega} \to \omega^{\omega}$ we now know that it is tree-representable, but how "complicated" are the trees in the range of the tree-representation?

Intuitive answer

The more complex the function f, the more complex the trees in the representation

イロト イポト イヨト イヨト

Rank of a tree

Given a tree T that does not have infinite branches (we say that T is *well-founded*) then we can define recursively the usual $rank : T \rightarrow Ord$ as follows:

$$\mathsf{rank}_{\mathcal{T}}(s) = \begin{cases} \mathsf{sup}\{\mathsf{rank}_{\mathcal{T}}(s^{\widehat{}}a) + 1 \mid s^{\widehat{}}a \in \mathcal{T}\} & \text{ if } s \text{ is not terminal} \\ 0 & \text{ otherwise} \end{cases}$$

where we call a node $s \in T$ terminal in T if there is no a such that $s^{-}a \in T$.

We can define the rank of a well-founded tree T as

 $\operatorname{rank}(T) = \operatorname{rank}_T(\emptyset) + 1$

15/29

イロト イポト イヨト イヨト

Rank^\star of a tree

Given a tree T and a node $s \in T$, define $T_s^* = T \setminus (s^{(T \upharpoonright s)})$. Suppose T_s^* is well-founded, then we set

$$\mathsf{rank}_T^\star(s) = \mathsf{rank}(T_s^\star).$$

< ロ > < 同 > < 回 > < 回 >

Representing Baire class α functions

Stratifying UB

Using the rank_T and rank_T^{*} functions, we can define subclasses UB_{α} for each α countable ordinal, that stratify the class of trees having a unique branch

 $\mathsf{UB}_0\subset\mathsf{UB}_1\subset\cdots\subset\mathsf{UB}_\alpha\subset\ldots$

As we climb up the hierarchy we get trees that branch out more and more off the unique branch.

イロト イポト イモト イモト

Representing Baire class α functions

Stratifying UB

Using the rank_T and rank_T^{*} functions, we can define subclasses UB_{α} for each α countable ordinal, that stratify the class of trees having a unique branch

 $\mathsf{UB}_0\subset\mathsf{UB}_1\subset\cdots\subset\mathsf{UB}_\alpha\subset\ldots$

As we climb up the hierarchy we get trees that branch out more and more off the unique branch.

Theorem 12 (Louveau, Semmes 2009).

For any $\alpha < \omega_1$, a function $f : \omega^{\omega} \to \omega^{\omega}$ is Baire class α if and only if there exists a continuous function $\varphi : \omega^{\omega} \to (Tr(\omega \times \omega), \tau_c)$ such that, for all $x \in \omega^{\omega}$, $\varphi(x)$ is in UB_{α} and $Proj(branch of \varphi(x)) = f(x)$.

Representating Σ_{λ}^{0} -measurable functions

We can define new subclasses $UB'_{\lambda} \subset UB_{\lambda}$ for each λ countable limit that allows to capture the class of Σ^{0}_{λ} -measurable functions.

Theorem 13 (Louveau, 2009).

For any countable limit ordinal λ , a function $f: \omega^{\omega} \to \omega^{\omega}$ is Σ_{λ}^{0} -measurable if and only if there exists a continuous function $\varphi: \omega^{\omega} \to (Tr(\omega \times \omega), \tau_{C})$ such that, for all $x \in \omega^{\omega}$, $\varphi(x)$ is in UB_{λ}^{l} and Proj(branch of $\varphi(x)$) = f(x).

イロト イヨト イモト イモト

What happens if we work with trees on ω (not $\omega \times \omega$)?

< □ > < □ > < □ > < □ > < □ >

What happens if we work with trees on ω (not $\omega \times \omega$)?

Definition 14.

Given a function $f:\omega^{\omega} \to \omega^{\omega}$, we define the modified Borel game $G_{\mathbf{B}}^{w}(f)$ as the game in which Player I constructs a sequence $x \in \omega^{\omega}$ and Player II constructs a tree T on ω and Player II wins the game if T has a unique branch and its branch is f(x).

< ロ > < 同 > < 回 > < 回 >

What happens if we work with trees on ω (not $\omega \times \omega$)?

Definition 14.

Given a function $f: \omega^{\omega} \to \omega^{\omega}$, we define the modified Borel game $G_{B}^{w}(f)$ as the game in which Player I constructs a sequence $x \in \omega^{\omega}$ and Player II constructs a tree T on ω and Player II wins the game if T has a unique branch and its branch is f(x).

Proposition 15 (N.).

Given a function $f: \omega^{\omega} \to \omega^{\omega}$, Player II has a winning strategy in $G_{B}^{w}(f)$ if and only if graph $(f) \in \Pi_{2}^{0}$.

イロト イヨト イヨト イヨト

What happens if we work with trees on ω (not $\omega \times \omega$)?

Definition 14.

Given a function $f: \omega^{\omega} \to \omega^{\omega}$, we define the modified Borel game $G_{B}^{w}(f)$ as the game in which Player I constructs a sequence $x \in \omega^{\omega}$ and Player II constructs a tree T on ω and Player II wins the game if T has a unique branch and its branch is f(x).

Proposition 15 (N.).

Given a function $f: \omega^{\omega} \to \omega^{\omega}$, Player II has a winning strategy in $G_{B}^{w}(f)$ if and only if graph $(f) \in \Pi_{2}^{0}$.

Proposition 16 (N.).

Given a Borel function $f : \omega^{\omega} \to \omega^{\omega}$, if graph $(f) \notin \Pi_2^0$ then Player I has a winning strategy in $G_B^w(f)$.

イロト イポト イヨト イヨト

Sketch of proof for Proposition 15

Sketch of proof for Proposition 15

(⇔)

• Fix a decreasing sequence of open sets $(U_n)_{n \in \omega}$ s.t. graph $(f) = \bigcap_{n \in \omega} U_n$.

Sketch of proof for Proposition 15

(⇔)

- Fix a decreasing sequence of open sets $(U_n)_{n \in \omega}$ s.t. graph $(f) = \bigcap_{n \in \omega} U_n$.
- Consider the strategy, which we call σ , for Player II according to which, at round $i \in \omega$, if Player I has played $s \in \omega^i$, Player II adds to his tree the sequences $t \in \omega^{<\omega}$ s.t. $\max\{n \in \omega \mid N_s \times N_t \subseteq U_n\} > \max\{n \in \omega \mid N_s \times N_{t \mid t \mid -1} \subseteq U_n\}$.

Sketch of proof for Proposition 15

- Fix a decreasing sequence of open sets $(U_n)_{n \in \omega}$ s.t. graph $(f) = \bigcap_{n \in \omega} U_n$.
- Consider the strategy, which we call σ , for Player II according to which, at round $i \in \omega$, if Player I has played $s \in \omega^i$, Player II adds to his tree the sequences $t \in \omega^{<\omega}$ s.t. max $\{n \in \omega \mid N_s \times N_t \subseteq U_n\} > \max\{n \in \omega \mid N_s \times N_t|_{t \mid t \mid -1} \subseteq U_n\}$.
- Check that

(⇔)

$$y \in \left[\bigcup_{n \in \omega} \sigma(x \upharpoonright n)\right] \iff \forall n \exists m_0 \exists m_1 \ (N_{x \upharpoonright m_0} \times N_{y \upharpoonright m_1} \subseteq U_n)$$
$$\iff \langle x, y \rangle \in graph(f)$$

Sketch of proof for Proposition 15

- Fix a decreasing sequence of open sets $(U_n)_{n \in \omega}$ s.t. graph $(f) = \bigcap_{n \in \omega} U_n$.
- Consider the strategy, which we call σ , for Player II according to which, at round $i \in \omega$, if Player I has played $s \in \omega^i$, Player II adds to his tree the sequences $t \in \omega^{<\omega}$ s.t. max $\{n \in \omega \mid N_s \times N_t \subseteq U_n\} > \max\{n \in \omega \mid N_s \times N_t|_{t \mid t|-1} \subseteq U_n\}$.
- Check that

(⇔)

$$y \in \left[\bigcup_{n \in \omega} \sigma(x \upharpoonright n)\right] \iff \forall n \exists m_0 \exists m_1 \ (N_{x \upharpoonright m_0} \times N_{y \upharpoonright m_1} \subseteq U_n)$$
$$\iff \langle x, y \rangle \in graph(f)$$

 (\Rightarrow) : Fix a winning strategy σ for Player II in $G_{\mathsf{B}}^{w}(f)$, check that

$$graph(f) = \bigcap_{n \in \omega} \bigcup \{ N_s \times N_t \mid t \in \omega^n \text{ and } s \in \omega^{<\omega} \text{ s.t. } t \in \sigma(s) \}$$

Lorenzo Notaro (Univ. Torino)

If we modify accordingly the Louveau's definition of tree-representable function with end up characterizing closed graph functions.

Proposition 17 (N.).

Given a function $f: \omega^{\omega} \to \omega^{\omega}$, its graph is closed if and only if there exists a continuous function $\varphi: \omega^{\omega} \to (Tr(\omega), \tau_c)$ such that, for all $x \in \omega^{\omega}$, $\varphi(x)$ has a unique branch and its branch is f(x).

イロト イヨト イヨト イヨト

Other reduction games

From the Borel game $G_{\mathbf{B}}(f)$ we can recover other similar games (reduction games) that have been studied, by adding contraints on the complexity of the trees played by Player II.

Other reduction games

From the Borel game $G_B(f)$ we can recover other similar games (reduction games) that have been studied, by adding contraints on the complexity of the trees played by Player II.

Definition 18.

Given G, G' perfect information two players infinite games, we say that G, G' are *equivalent* if given a winning strategy for Player I (resp. II) in G we can define a winning strategy for Player I (resp. II) in G' and vice versa.

Other reduction games

From the Borel game $G_B(f)$ we can recover other similar games (reduction games) that have been studied, by adding contraints on the complexity of the trees played by Player II.

Definition 18.

l orenzo

Given G, G' perfect information two players infinite games, we say that G, G' are *equivalent* if given a winning strategy for Player I (resp. II) in G we can define a winning strategy for Player I (resp. II) in G' and vice versa.

Proposition 19 (Folklore).

The Wadge game $G_W(f)$, Duparc's eraser game $G_e(f)$ and Van Wesep's backtrack game $G_{bt}(f)$ are equivalent to the Borel game $G_B(f)$ once we require Player II to play, in order to win, a tree respectively linear, in UB₁ and in a subclass of UB₁.

			-		
	$G_{\rm B}(f)$ where Player II play	/s a tree in	_		
$G_W(f)$	UB ₀				
$G_e(f)$	UB ₁				
$G_{ t bt}(f)$	UB_1^-				
		• • • • • • • • • • • • • • • • • • •	<	æ	590
Notaro (Univ. Torino)	Tree-representations for Borel functions		February 4, 2022		22/20

Determinacy

Definition 20.

A two player perfect information infinite game is *determined* if any of the two players has a winning strategy.

イロト イポト イヨト イヨト

Determinacy

Definition 20.

A two player perfect information infinite game is *determined* if any of the two players has a winning strategy.

Theorem 21 ([Carroy, 2014]).

For all functions $f: \omega^{\omega} \to \omega^{\omega}$, the Wadge $G_W(f)$, the eraser game $G_e(f)$ and the backtrack game $G_{bt}(f)$ are determined.

Determinacy

Definition 20.

A two player perfect information infinite game is *determined* if any of the two players has a winning strategy.

Theorem 21 ([Carroy, 2014]).

For all functions $f: \omega^{\omega} \to \omega^{\omega}$, the Wadge $G_W(f)$, the eraser game $G_e(f)$ and the backtrack game $G_{bt}(f)$ are determined.

The proof of this result does not appeal to Martin's Borel determinacy.

Is the Borel Game $G_B(f)$ determined?

メロト スピト メヨト メヨト

2

Is the Borel Game $G_{\mathbf{B}}(f)$ determined?

Theorem 22 (N.).

Given a subset $A \subseteq \omega^{\omega}$, if Player I has a winning strategy in $G_B(\mathbb{1}_A)$ then A contains a perfect set.

where the function $\mathbb{1}_A$ is the function

$$\mathbb{1}_A: \omega^\omega \longrightarrow \omega^\omega$$

 $x \longmapsto \begin{cases} \langle \mathbf{1} \rangle^\omega & \text{ if } x \in A \\ \langle \mathbf{0} \rangle^\omega & \text{ otherwise} \end{cases}$

イロト イポト イヨト イヨト

Is the Borel Game $G_{\mathbf{B}}(f)$ determined?

Theorem 22 (N.).

Given a subset $A \subseteq \omega^{\omega}$, if Player I has a winning strategy in $G_B(\mathbb{1}_A)$ then A contains a perfect set.

where the function $\mathbb{1}_A$ is the function

1

$$egin{aligned} &{}_{\mathcal{A}}:\omega^{\omega}\longrightarrow\omega^{\omega} \ & x\longmapsto egin{cases} &\langle 1
angle^{\omega} & ext{ if } x\in \mathcal{A} \ &\langle 0
angle^{\omega} & ext{ otherwise} \end{aligned}$$

Corollary 23.

The determinacy of $G_B(f)$ for all $f: \omega^{\omega} \to \omega^{\omega}$ implies that every non-Borel subset of the Baire space has the perfect set property.

Corollary 24.

(ZFC) There exists a function $f: \omega^{\omega} \to \omega^{\omega}$ such that $G_{B}(f)$ is undetermined.

Definition 25.

For $A, B \subseteq \omega^{\omega}$, the game $G_{B}(A, B)$ is a game with the same rules as the Borel game, but Player II wins if and only if

 $x \in A \iff \operatorname{Proj}(\operatorname{unique} \operatorname{branch} \operatorname{of} T) \in B$

where x is the sequence played by Player I and T is the tree played by Player II.

Definition 25.

For $A, B \subseteq \omega^{\omega}$, the game $G_{B}(A, B)$ is a game with the same rules as the Borel game, but Player II wins if and only if

 $x \in A \iff \operatorname{Proj}(\operatorname{unique} \operatorname{branch} \operatorname{of} T) \in B$

where x is the sequence played by Player I and T is the tree played by Player II.

Remark.

Given $A, B \subseteq \omega^{\omega}$, Player II has a winning strategy in $G_{\mathbf{B}}(A, B)$ if and only if $A \leq_{\mathbf{B}} B$, i.e. there exists a Borel function $f : \omega^{\omega} \to \omega^{\omega}$ such that $f^{-1}(B) = A$.

AD^{B}

We denote with AD^{B} the statement "For all $A, B \subseteq \omega^{\omega}$, the game $G_{B}(A, B)$ is determined".

イロト イポト イヨト イヨト

$\mathsf{AD}^{\mathbf{B}}$

We denote with AD^B the statement "For all $A, B \subseteq \omega^{\omega}$, the game $G_B(A, B)$ is determined".

AD^B implies the following statement:

for all $A, B \subseteq \omega^{\omega} A \leq_{\mathbf{B}} B$ or $B \leq_{\mathbf{B}} \neg A$

which is called SLO^B and is sufficient (in (ZF + DC(ω^{ω}) + BP)) to prove that \leq_B is well-founded and the structure of its equivalence classes is isomorphic to the one for the Wadge (continuous) reduction (see [Andretta and Martin, 2003]).

Lorenzo Notaro	(Univ. Torino)
----------------	----------------

イロト イヨト イヨト イヨト

Open question.

What is the consistency strength of "Det($G_B(f)$) for all $f: \omega^{\omega} \to \omega^{\omega}$ "? What is the relationship of such statement with other known determinacy statements?

イロト イポト イヨト イヨト

Open question.

What is the consistency strength of "Det($G_B(f)$) for all $f : \omega^{\omega} \to \omega^{\omega}$ "? What is the relationship of such statement with other known determinacy statements?

Open question.

What is the consistency strength of AD^B?

Lorenzo	Notaro I	(Univ.	Torino)
---------	----------	--------	--------	---

Open question.

What is the consistency strength of "Det($G_B(f)$) for all $f: \omega^{\omega} \to \omega^{\omega n}$? What is the relationship of such statement with other known determinacy statements?

Open question.

What is the consistency strength of AD^B?

Open question (see [Andretta, 2006]).

 $(\mathsf{ZF} + \mathsf{DC}(\omega^{\omega}) + \mathsf{BP})$ Does $\mathsf{SLO}^{\mathsf{B}} \iff \mathsf{AD}^{\mathsf{B}} \iff \mathsf{SLO}^{\mathsf{W}}$ hold?

Open question.

What is the consistency strength of "Det($G_B(f)$) for all $f: \omega^{\omega} \to \omega^{\omega n}$? What is the relationship of such statement with other known determinacy statements?

Open question.

What is the consistency strength of AD^B?

Open question (see [Andretta, 2006]).

 $(\mathsf{ZF} + \mathsf{DC}(\omega^{\omega}) + \mathsf{BP})$ Does $\mathsf{SLO}^{\mathsf{B}} \iff \mathsf{AD}^{\mathsf{B}} \iff \mathsf{SLO}^{\mathsf{W}}$ hold?

Thank you for the attention

References I

Andretta, A. (2003).

Equivalence between Wadge and Lipschitz determinacy. Ann. Pure Appl. Logic, 123(1-3):163–192.

Andretta, A. (2006). More on Wadge determinacy. Ann. Pure Appl. Logic, 144(1-3):2-32.

Andretta, A. (2007). The SLO principle and the Wadge hierarchy.

In *Foundations of the formal sciences V*, volume 11 of *Stud. Log. (Lond.)*, pages 1–38. Coll. Publ., London.

Andretta, A. and Martin, D. A. (2003).

Borel-Wadge degrees.

Fund. Math., 177(2):175–192.

Carroy, R. (2014). Playing in the first Baire class. *MLQ Math. Log. Q.*, 60(1-2):118–132.

イロト イ団ト イヨト イヨト

References II

Kechris, A. S. (1995).

Classical Descriptive Set Theory. Springer.

Nobrega, H. (2018).

Games for functions: Baire classes, Weihrauch degrees, transfinite computations, and ranks.

PhD thesis, Amsterdam: Institute for Logic, Language and Computation.

Saint-Raymond, J. (1976).

Espaces à modèle séparable.

Ann. Inst. Fourier (Grenoble), 26(3):xi, 211-256.

Semmes, B. (2009).

A game for the Borel functions.

PhD thesis, Amsterdam: Institute for Logic, Language and Computation.

< ロ > < 同 > < 回 > < 回 >