Tree-representations for Borel functions

Lorenzo Notaro
Università di Torino, Dipartimento di Matematica "G. Peano"

Winter School in Abstract Analysis 2022
Section Set Theory \& Topology

February 4, 2022

Borel sets

Definition 1.

Let (X, τ) be a topological space. The class of Borel sets of X, denoted with $\mathcal{B}(X)$, is the σ-algebra generated by the open sets of X, i.e. the smallest σ-algebra containing the topology.

Definition 2.

Given two topological spaces X, Y and a function $f: X \rightarrow Y$, we say that f is a Borel function or Borel measurable if $f^{-1}(U) \in \mathcal{B}(X)$ for every open $U \subseteq Y$.

Borel Hierarchy

Take (X, τ) metrizable, we can stratify the Borel sets of X into classes $\boldsymbol{\Sigma}_{\xi}^{0}, \boldsymbol{\Pi}_{\xi}^{0}, \boldsymbol{\Delta}_{\xi}^{0}$ (for ξ countable ordinal) by inductively iterating countable unions and taking complements starting from the open sets.

Borel Hierarchy

Take (X, τ) metrizable, we can stratify the Borel sets of X into classes $\boldsymbol{\Sigma}_{\xi}^{0}, \boldsymbol{\Pi}_{\xi}^{0}, \boldsymbol{\Delta}_{\xi}^{0}$ (for ξ countable ordinal) by inductively iterating countable unions and taking complements starting from the open sets.

Definition 3.

Given two spaces X, Y, and a countable ordinal $\alpha>1$, we say that a function $f: X \rightarrow Y$ is $\boldsymbol{\Sigma}_{\alpha}^{0}$-measurable if $f^{-1}(U) \in \boldsymbol{\Sigma}_{\alpha}^{0}(X)$ for every open $U \subseteq Y$.

Baire functions

Definition 4.

A function is Baire class 1 if it is the pointwise limit of a sequence of continuous functions.

Baire functions

Definition 4.

A function is Baire class 1 if it is the pointwise limit of a sequence of continuous functions.

Definition 5.

For all $\alpha>1$ countable ordinals, we can define recursively the Baire class α to be the class of functions which are pointwise limits of sequences of Baire class $<\alpha$ functions.

Baire functions

Definition 4.
A function is Baire class 1 if it is the pointwise limit of a sequence of continuous functions.

Definition 5.

For all $\alpha>1$ countable ordinals, we can define recursively the Baire class α to be the class of functions which are pointwise limits of sequences of Baire class $<\alpha$ functions.

Theorem 6 (Lebesgue, Hausdorff, Banach).
Let X, Y be separable metrizable spaces, with X zero-dimensional. Then for $1 \leq \alpha<\omega_{1}$ $f: X \rightarrow Y$ is Baire class α if and only if it is $\boldsymbol{\Sigma}_{\alpha+1}^{0}$-measurable.

Trees

Definition 7.

A Tree on a set A is a subset $T \subseteq A^{<\omega}=\left\{\left\langle a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle \mid n \in \omega \wedge \forall i<n a_{i} \in A\right\}$ closed under initial segments. The body of a tree T is the set if its branches:

$$
[T]=\left\{\left(a_{n}\right)_{n \in \omega} \in A^{\omega} \mid\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle \in T \text { for all } n \in \omega\right\}
$$

Topologies on Trees

We work with trees on countable sets, and there are two topologies on the set of trees $\operatorname{Tr}(A)$ we are interested in:

Topologies on Trees

We work with trees on countable sets, and there are two topologies on the set of trees $\operatorname{Tr}(A)$ we are interested in:

- the topology τs generated by the sets $\{T$ tree on $A \mid s \in T\}$ with $s \in A^{<\omega}$.

Topologies on Trees

We work with trees on countable sets, and there are two topologies on the set of trees $\operatorname{Tr}(A)$ we are interested in:

- the topology τs generated by the sets $\{T$ tree on $A \mid s \in T\}$ with $s \in A^{<\omega}$.
- the topology τ_{c} generated by the sets $\{T$ tree on $A \mid s \in T\},\{T$ tree on $A \mid s \notin T\}$ with $s \in A^{<\omega}$.

Topologies on Trees

We work with trees on countable sets, and there are two topologies on the set of trees $\operatorname{Tr}(A)$ we are interested in:

- the topology τs generated by the sets $\{T$ tree on $A \mid s \in T\}$ with $s \in A^{<\omega}$.
- the topology τ_{C} generated by the sets $\{T$ tree on $A \mid s \in T\},\{T$ tree on $A \mid s \notin T\}$ with $s \in A^{<\omega}$.

Remark 8.

(1) $\tau s \subseteq \tau_{c}$.
(2) $\tau_{C} \subseteq \boldsymbol{\Sigma}_{2}^{0}\left(\tau_{S}\right)$.
(3) $\left(\operatorname{Tr}(A), \tau_{C}\right) \cong 2^{\omega}$.
(9) τ_{S} is the Scott topology of $(\operatorname{Tr}(A), \subseteq)$.

Game for Borel functions

Definition 9 (Borel Game).

Given a function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ we define the following perfect information two players infinite game $G_{B}(f)$:
At each round $n \in \omega$, Player I plays a natural number $x_{n} \in \omega$, and then Player II plays a finite tree T_{n} on $\omega \times \omega$ (i.e. the set of couples of natural numbers) s.t. $T_{n} \subseteq T_{n+1}$.

Game for Borel functions

Definition 9 (Borel Game).

Given a function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ we define the following perfect information two players infinite game $G_{B}(f)$:
At each round $n \in \omega$, Player I plays a natural number $x_{n} \in \omega$, and then Player II plays a finite tree T_{n} on $\omega \times \omega$ (i.e. the set of couples of natural numbers) s.t. $T_{n} \subseteq T_{n+1}$. A partial history (or play) of the game looks like this:

$$
\left(x_{0}, T_{0}, x_{1}, T_{1}, x_{2}, T_{2}, \ldots, x_{n}, T_{n}\right)
$$

So at the end of the game Player I has produced an infinite sequence $x \in \omega^{\omega}$ whilst Player II has produced a tree $T=\bigcup_{n \in \omega} T_{n}$

Game for Borel functions

Definition 9 (Borel Game).

Given a function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ we define the following perfect information two players infinite game $G_{B}(f)$:
At each round $n \in \omega$, Player I plays a natural number $x_{n} \in \omega$, and then Player II plays a finite tree T_{n} on $\omega \times \omega$ (i.e. the set of couples of natural numbers) s.t. $T_{n} \subseteq T_{n+1}$. A partial history (or play) of the game looks like this:

$$
\left(x_{0}, T_{0}, x_{1}, T_{1}, x_{2}, T_{2}, \ldots, x_{n}, T_{n}\right)
$$

So at the end of the game Player I has produced an infinite sequence $x \in \omega^{\omega}$ whilst Player II has produced a tree $T=\bigcup_{n \in \omega} T_{n}$

We say that Player II wins iff T has a unique branch and $\operatorname{Proj}($ branch of $T)=f(x)$.

$$
f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}
$$

I:

II:

$f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$

I:
 3

II:

$$
f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}
$$

$I: \quad 3$

II:

$$
f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}
$$

$$
\begin{array}{lll}
\text { I: } & 3 & 10 \\
& & \\
& & \\
& \varnothing \cdot & \\
\langle\langle 1\rangle,\langle 5\rangle\rangle
\end{array}
$$

$$
f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}
$$

$$
f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}
$$

$$
f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}
$$

$$
I: \quad 3 \quad 10 \quad 4
$$

$$
f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}
$$

$I: \quad 3 \quad 10 \quad 4 \quad 56 \quad 0 \quad \ldots \quad \rightarrow \quad \mapsto=\langle 3,10,4, \ldots\rangle$

Strategies for Player II in $G_{\mathbf{B}}(f)$

Strategies for Player II in G_{B}
Given a strategy σ for Player II in $G_{\mathrm{B}}(f)$ then the following map is continuous

$$
\begin{aligned}
\varphi_{\sigma}: \omega^{\omega} & \longrightarrow\left(\operatorname{Tr}(\omega \times \omega), \tau_{S}\right) \\
x & \bigcup_{n \in \omega} \sigma(x \upharpoonright n)
\end{aligned}
$$

Strategies for Player II in $G_{\mathbf{B}}(f)$

Strategies for Player II in G_{B}
Given a strategy σ for Player II in $G_{\mathrm{B}}(f)$ then the following map is continuous

$$
\begin{aligned}
\varphi_{\sigma}: \omega^{\omega} & \longrightarrow\left(\operatorname{Tr}(\omega \times \omega), \tau_{S}\right) \\
x & \longmapsto \bigcup_{n \in \omega} \sigma(x \upharpoonright n)
\end{aligned}
$$

Conversely, given a continuous function $\varphi: \omega^{\omega} \rightarrow\left(\operatorname{Tr}(\omega \times \omega), \tau_{s}\right)$, there exists a strategy σ_{φ} for Player II such that

$$
\bigcup_{n \in \omega} \sigma_{\varphi}(x \upharpoonright n)=\varphi(x) \quad \text { for all } x \in \omega^{\omega}
$$

Borel Representation result

Theorem 10 ([Semmes, 2009]).
A function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ is Borel measurable if and only if Player II has a winning strategy in $G_{B}(f)$.

Borel Representation result

Theorem 10 ([Semmes, 2009]).
A function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ is Borel measurable if and only if Player II has a winning strategy in $G_{B}(f)$.

Theorem 11 (Louveau, 2009).
A function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ is Borel measurable if and only if there exists a continuous function $\varphi: \omega^{\omega} \rightarrow\left(\operatorname{Tr}(\omega \times \omega), \tau_{c}\right)$ such that, for all $x \in \omega^{\omega}, \varphi(x)$ has a unique branch and $\operatorname{Proj}($ branch of $\varphi(x))=f(x)$.

The map φ of Theorem 11 is called a tree-representation for the function f, and a function admitting such map is called tree-representable.

Proof(s) of Louveau's theorem

Proof of Louveau's theorem
(\Leftarrow) : Given a function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ with a tree-representation $\varphi: \omega^{\omega} \rightarrow\left(\operatorname{Tr}(\omega \times \omega), \tau_{C}\right)$, and an open set $U \subseteq \omega^{\omega}$ we have

$$
\begin{aligned}
f^{-1}(U) & =\left\{x \in \omega^{\omega} \mid \exists y, z \in \omega^{\omega}(y \in U \wedge \forall n \in \omega\langle y \upharpoonright n, z \upharpoonright n\rangle \in \varphi(x))\right\} \\
& =\left\{x \in \omega^{\omega} \mid \forall y, z \in \omega^{\omega}(y \in U \vee \exists n \in \omega\langle y \upharpoonright n, z \upharpoonright n\rangle \notin \varphi(x))\right\}
\end{aligned}
$$

Hence $f^{-1}(U) \in \Delta_{1}^{1}\left(\omega^{\omega}\right)$, and by Lusin's separation theorem it is Borel.

Proof of Louveau's theorem

(\Rightarrow) : Given a Borel function $f: \omega^{\omega} \rightarrow \omega^{\omega}$, there is a zero-dimensional Polish topology τ^{\prime} on ω^{ω} which refines the usual product topology τ and such that
$f \circ$ id $:\left(\omega^{\omega}, \tau^{\prime}\right) \rightarrow\left(\omega^{\omega}, \tau\right)$ is continuous, with id : $\left(\omega^{\omega}, \tau^{\prime}\right) \rightarrow\left(\omega^{\omega}, \tau\right)$ being the identity.

Proof of Louveau's theorem

(\Rightarrow) : Given a Borel function $f: \omega^{\omega} \rightarrow \omega^{\omega}$, there is a zero-dimensional Polish topology τ^{\prime} on ω^{ω} which refines the usual product topology τ and such that $f \circ$ id : $\left(\omega^{\omega}, \tau^{\prime}\right) \rightarrow\left(\omega^{\omega}, \tau\right)$ is continuous, with id : $\left.\omega^{\omega}, \tau^{\prime}\right) \rightarrow\left(\omega^{\omega}, \tau\right)$ being the identity. As τ^{\prime} is Polish zero-dimensional, there exists a closed $F \subseteq \omega^{\omega}$ which is homeomorphic to $\left(\omega^{\omega}, \tau^{\prime}\right)$ via a map g. Consider the map

$$
\begin{aligned}
h: \omega^{\omega} & \longrightarrow \omega^{\omega} \times \omega^{\omega} \\
x & \longmapsto\left(f(x), g \circ i d^{-1}(x)\right)
\end{aligned}
$$

The graph of h is closed as

$$
\operatorname{graph}(h)=\left\{(x, y, z) \in\left(\omega^{\omega}\right)^{3} \mid y=f \circ i d \circ g^{-1}(z), x=i d \circ g^{-1}(z)\right\}
$$

Proof of Louveau's theorem

(\Rightarrow) : Given a Borel function $f: \omega^{\omega} \rightarrow \omega^{\omega}$, there is a zero-dimensional Polish topology τ^{\prime} on ω^{ω} which refines the usual product topology τ and such that $f \circ$ id : $\left(\omega^{\omega}, \tau^{\prime}\right) \rightarrow\left(\omega^{\omega}, \tau\right)$ is continuous, with id : $\left.\omega^{\omega}, \tau^{\prime}\right) \rightarrow\left(\omega^{\omega}, \tau\right)$ being the identity. As τ^{\prime} is Polish zero-dimensional, there exists a closed $F \subseteq \omega^{\omega}$ which is homeomorphic to $\left(\omega^{\omega}, \tau^{\prime}\right)$ via a map g. Consider the map

$$
\begin{aligned}
h: \omega^{\omega} & \longrightarrow \omega^{\omega} \times \omega^{\omega} \\
x & \longmapsto\left(f(x), g \circ i d^{-1}(x)\right)
\end{aligned}
$$

The graph of h is closed as

$$
\operatorname{graph}(h)=\left\{(x, y, z) \in\left(\omega^{\omega}\right)^{3} \mid y=f \circ i d \circ g^{-1}(z), x=i d \circ g^{-1}(z)\right\}
$$

therefore there is a pruned tree T on ω^{3} such that $\operatorname{graph}(h)=[T]$. Now we can set

$$
\begin{aligned}
\varphi: \omega^{\omega} & \longrightarrow\left(\operatorname{Tr}(\omega \times \omega), \tau_{c}\right) \\
x & \longmapsto\left\{s \in(\omega \times \omega)^{n} \mid n \in \omega \text { and }\langle x \mid n, s\rangle \in T\right\}
\end{aligned}
$$

And φ is the tree-representation we were looking for.

Ideas for another proof.
(\Rightarrow) : We can prove this direction also by induction on the Baire hierarchy, by showing that the pointwise limit of a sequence of tree-representable functions is itself tree-representable.

Ideas for another proof.
(\Rightarrow) : We can prove this direction also by induction on the Baire hierarchy, by showing that the pointwise limit of a sequence of tree-representable functions is itself tree-representable.
Indeed as every continuous function is tree-representable by a map that ranges among linear trees, we would be done.

Finer results

Given a Borel function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ we now know that it is tree-representable, but how "complicated" are the trees in the range of the tree-representation?

Finer results

Given a Borel function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ we now know that it is tree-representable, but how "complicated" are the trees in the range of the tree-representation?

Intuitive answer
The more complex the function f, the more complex the trees in the representation

Rank of a tree

Given a tree T that does not have infinite branches (we say that T is well-founded) then we can define recursively the usual rank: $T \rightarrow$ Ord as follows:

$$
\operatorname{rank}_{T}(s)= \begin{cases}\sup \left\{\operatorname{rank}_{T}\left(s^{\wedge} a\right)+1 \mid s^{\wedge} a \in T\right\} & \text { if } s \text { is not terminal } \\ 0 & \text { otherwise }\end{cases}
$$

where we call a node $s \in T$ terminal in T if there is no a such that $s^{\wedge} a \in T$.
We can define the rank of a well-founded tree T as

$$
\operatorname{rank}(T)=\operatorname{rank}_{T}(\emptyset)+1
$$

Rank* of a tree

Given a tree T and a node $s \in T$, define $T_{s}^{\star}=T \backslash\left(s^{\wedge}(T \upharpoonright s)\right)$. Suppose T_{s}^{\star} is well-founded, then we set

$$
\operatorname{rank}_{T}^{\star}(s)=\operatorname{rank}\left(T_{s}^{\star}\right)
$$

Representing Baire class α functions

Stratifying UB
Using the rank_{T} and $\operatorname{rank}_{T}^{\star}$ functions, we can define subclasses UB_{α} for each α countable ordinal, that stratify the class of trees having a unique branch

$$
\mathrm{UB}_{0} \subset \mathrm{UB}_{1} \subset \cdots \subset \mathrm{UB}_{\alpha} \subset \ldots
$$

As we climb up the hierarchy we get trees that branch out more and more off the unique branch.

Representing Baire class α functions

Stratifying UB

Using the rank_{T} and $\operatorname{rank}_{T}^{\star}$ functions, we can define subclasses UB_{α} for each α countable ordinal, that stratify the class of trees having a unique branch

$$
\mathrm{UB}_{0} \subset \mathrm{UB}_{1} \subset \cdots \subset \mathrm{UB}_{\alpha} \subset \ldots
$$

As we climb up the hierarchy we get trees that branch out more and more off the unique branch.

Theorem 12 (Louveau, Semmes 2009).
For any $\alpha<\omega_{1}$, a function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ is Baire class α if and only if there exists a continuous function $\varphi: \omega^{\omega} \rightarrow\left(\operatorname{Tr}(\omega \times \omega), \tau_{C}\right)$ such that, for all $x \in \omega^{\omega}, \varphi(x)$ is in $U B_{\alpha}$ and $\operatorname{Proj}(\operatorname{branch}$ of $\varphi(x))=f(x)$.

Representating $\boldsymbol{\Sigma}_{\lambda}^{0}$-measurable functions

We can define new subclasses $\mathrm{UB}_{\lambda}^{\prime} \subset \mathrm{UB}_{\lambda}$ for each λ countable limit that allows to capture the class of $\boldsymbol{\Sigma}_{\lambda}^{0}$-measurable functions.

Theorem 13 (Louveau, 2009).
For any countable limit ordinal λ, a function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ is $\boldsymbol{\Sigma}_{\lambda}^{0}$-measurable if and only if there exists a continuous function $\varphi: \omega^{\omega} \rightarrow(\operatorname{Tr}(\omega \times \omega), \tau c)$ such that, for all $x \in \omega^{\omega}$, $\varphi(x)$ is in $U B_{\lambda}^{\prime}$ and $\operatorname{Proj}($ branch of $\varphi(x))=f(x)$.

Additional Representation results

What happens if we work with trees on ω (not $\omega \times \omega$)?

Additional Representation results

What happens if we work with trees on ω (not $\omega \times \omega$)?
Definition 14.
Given a function $f: \omega^{\omega} \rightarrow \omega^{\omega}$, we define the modified Borel game $G_{B}^{\omega}(f)$ as the game in which Player I constructs a sequence $x \in \omega^{\omega}$ and Player II constructs a tree T on ω and Player II wins the game if T has a unique branch and its branch is $f(x)$.

Additional Representation results

What happens if we work with trees on ω (not $\omega \times \omega$)?
Definition 14.
Given a function $f: \omega^{\omega} \rightarrow \omega^{\omega}$, we define the modified Borel game $G_{B}^{\omega}(f)$ as the game in which Player I constructs a sequence $x \in \omega^{\omega}$ and Player II constructs a tree T on ω and Player II wins the game if T has a unique branch and its branch is $f(x)$.

Proposition 15 (N.).
Given a function $f: \omega^{\omega} \rightarrow \omega^{\omega}$, Player II has a winning strategy in $G_{B}^{w}(f)$ if and only if $\operatorname{graph}(f) \in \boldsymbol{\Pi}_{2}^{0}$.

Additional Representation results

What happens if we work with trees on ω (not $\omega \times \omega$)?
Definition 14.
Given a function $f: \omega^{\omega} \rightarrow \omega^{\omega}$, we define the modified Borel game $G_{B}^{\omega}(f)$ as the game in which Player I constructs a sequence $x \in \omega^{\omega}$ and Player II constructs a tree T on ω and Player II wins the game if T has a unique branch and its branch is $f(x)$.

Proposition 15 (N.).
Given a function $f: \omega^{\omega} \rightarrow \omega^{\omega}$, Player II has a winning strategy in $G_{B}^{\omega}(f)$ if and only if $\operatorname{graph}(f) \in \boldsymbol{\Pi}_{2}^{0}$.

Proposition 16 (N.).
Given a Borel function $f: \omega^{\omega} \rightarrow \omega^{\omega}$, if $\operatorname{graph}(f) \notin \boldsymbol{\Pi}_{2}^{0}$ then Player I has a winning strategy in $G_{B}^{w}(f)$.

Additional Representation results

Sketch of proof for Proposition 15

Additional Representation results

Sketch of proof for Proposition 15
(\Leftarrow)

- Fix a decreasing sequence of open sets $\left(U_{n}\right)_{n \in \omega}$ s.t. $\operatorname{graph}(f)=\bigcap_{n \in \omega} U_{n}$.

Additional Representation results

Sketch of proof for Proposition 15
(\Leftarrow)

- Fix a decreasing sequence of open sets $\left(U_{n}\right)_{n \in \omega}$ s.t. $\operatorname{graph}(f)=\bigcap_{n \in \omega} U_{n}$.
- Consider the strategy, which we call σ, for Player II according to which, at round $i \in \omega$, if Player I has played $s \in \omega^{i}$, Player II adds to his tree the sequences $t \in \omega^{<\omega}$ s.t. $\max \left\{n \in \omega \mid N_{s} \times N_{t} \subseteq U_{n}\right\}>\max \left\{n \in \omega \mid N_{s} \times N_{t| | t \mid-1} \subseteq U_{n}\right\}$.

Additional Representation results

Sketch of proof for Proposition 15
(\Leftarrow)

- Fix a decreasing sequence of open sets $\left(U_{n}\right)_{n \in \omega}$ s.t. $\operatorname{graph}(f)=\bigcap_{n \in \omega} U_{n}$.
- Consider the strategy, which we call σ, for Player II according to which, at round $i \in \omega$, if Player I has played $s \in \omega^{i}$, Player II adds to his tree the sequences $t \in \omega^{<\omega}$ s.t. $\max \left\{n \in \omega \mid N_{s} \times N_{t} \subseteq U_{n}\right\}>\max \left\{n \in \omega \mid N_{s} \times N_{t| | t \mid-1} \subseteq U_{n}\right\}$.
- Check that

$$
\begin{aligned}
y \in\left[\bigcup_{n \in \omega} \sigma(x \upharpoonright n)\right] & \Longleftrightarrow \forall n \exists m_{0} \exists m_{1}\left(N_{x \upharpoonright m_{0}} \times N_{y \upharpoonright m_{1}} \subseteq U_{n}\right) \\
& \Longleftrightarrow\langle x, y\rangle \in \operatorname{graph}(f)
\end{aligned}
$$

Additional Representation results

Sketch of proof for Proposition 15
(\Leftarrow)

- Fix a decreasing sequence of open sets $\left(U_{n}\right)_{n \in \omega}$ s.t. $\operatorname{graph}(f)=\bigcap_{n \in \omega} U_{n}$.
- Consider the strategy, which we call σ, for Player II according to which, at round $i \in \omega$, if Player I has played $s \in \omega^{i}$, Player II adds to his tree the sequences $t \in \omega^{<\omega}$ s.t. $\max \left\{n \in \omega \mid N_{s} \times N_{t} \subseteq U_{n}\right\}>\max \left\{n \in \omega \mid N_{s} \times N_{t| | t \mid-1} \subseteq U_{n}\right\}$.
- Check that

$$
\begin{aligned}
y \in\left[\bigcup_{n \in \omega} \sigma(x \upharpoonright n)\right] & \Longleftrightarrow \forall n \exists m_{0} \exists m_{1}\left(N_{x \mid m_{0}} \times N_{y \upharpoonright m_{1}} \subseteq U_{n}\right) \\
& \Longleftrightarrow\langle x, y\rangle \in \operatorname{graph}(f)
\end{aligned}
$$

(\Rightarrow) : Fix a winning strategy σ for Player II in $G_{B}^{w}(f)$, check that

$$
\operatorname{graph}(f)=\bigcap_{n \in \omega} \bigcup\left\{N_{s} \times N_{t} \mid t \in \omega^{n} \text { and } s \in \omega^{<\omega} \text { s.t. } t \in \sigma(s)\right\}
$$

Additional Representation results

If we modify accordingly the Louveau's definition of tree-representable function with end up characterizing closed graph functions.

Proposition 17 (N.).

Given a function $f: \omega^{\omega} \rightarrow \omega^{\omega}$, its graph is closed if and only if there exists a continuous function $\varphi: \omega^{\omega} \rightarrow(\operatorname{Tr}(\omega), \tau c)$ such that, for all $x \in \omega^{\omega}, \varphi(x)$ has a unique branch and its branch is $f(x)$.

Other reduction games

From the Borel game $G_{\mathrm{B}}(f)$ we can recover other similar games (reduction games) that have been studied, by adding contraints on the complexity of the trees played by Player II.

Other reduction games

From the Borel game $G_{\mathrm{B}}(f)$ we can recover other similar games (reduction games) that have been studied, by adding contraints on the complexity of the trees played by Player II.

Definition 18.

Given G, G^{\prime} perfect information two players infinite games, we say that G, G^{\prime} are equivalent if given a winning strategy for Player I (resp. II) in G we can define a winning strategy for Player I (resp. II) in G^{\prime} and vice versa.

Other reduction games

From the Borel game $G_{B}(f)$ we can recover other similar games (reduction games) that have been studied, by adding contraints on the complexity of the trees played by Player II.

Definition 18.

Given G, G^{\prime} perfect information two players infinite games, we say that G, G^{\prime} are equivalent if given a winning strategy for Player I (resp. II) in G we can define a winning strategy for Player I (resp. II) in G^{\prime} and vice versa.

Proposition 19 (Folklore).
The Wadge game $G_{W}(f)$, Duparc's eraser game $G_{e}(f)$ and Van Wesep's backtrack game $G_{\mathrm{bt}}(f)$ are equivalent to the Borel game $G_{\mathrm{B}}(f)$ once we require Player II to play, in order to win, a tree respectively linear, in $U B_{1}$ and in a subclass of $U B_{1}$.

	$G_{\mathrm{B}}(f)$ where Player II plays a tree in
$G_{W}(f)$	UB_{0}
$G_{e}(f)$	UB_{1}
$G_{\mathrm{bt}}(f)$	UB_{1}^{-}

Determinacy

Definition 20.

A two player perfect information infinite game is determined if any of the two players has a winning strategy.

Determinacy

Definition 20.
A two player perfect information infinite game is determined if any of the two players has a winning strategy.

Theorem 21 ([Carroy, 2014]).
For all functions $f: \omega^{\omega} \rightarrow \omega^{\omega}$, the Wadge $G_{W}(f)$, the eraser game $G_{e}(f)$ and the backtrack game $G_{b t}(f)$ are determined.

Determinacy

Definition 20.

A two player perfect information infinite game is determined if any of the two players has a winning strategy.

Theorem 21 ([Carroy, 2014]).
For all functions $f: \omega^{\omega} \rightarrow \omega^{\omega}$, the Wadge $G_{W}(f)$, the eraser game $G_{e}(f)$ and the backtrack game $G_{b t}(f)$ are determined.

The proof of this result does not appeal to Martin's Borel determinacy.

Is the Borel Game $G_{\mathbf{B}}(f)$ determined?

Is the Borel Game $G_{\mathbf{B}}(f)$ determined?

Theorem 22 (N.).
Given a subset $A \subseteq \omega^{\omega}$, if Player I has a winning strategy in $G_{B}\left(\mathbb{1}_{A}\right)$ then A contains a perfect set.
where the function $\mathbb{1}_{A}$ is the function

$$
\begin{aligned}
\mathbb{1}_{A}: \omega^{\omega} & \longrightarrow \omega^{\omega} \\
x & \longmapsto \begin{cases}\langle 1\rangle^{\omega} & \text { if } x \in A \\
\langle 0\rangle^{\omega} & \text { otherwise }\end{cases}
\end{aligned}
$$

Is the Borel Game $G_{\mathbf{B}}(f)$ determined?

Theorem 22 (N.).
Given a subset $A \subseteq \omega^{\omega}$, if Player I has a winning strategy in $G_{B}\left(\mathbb{1}_{A}\right)$ then A contains a perfect set.
where the function $\mathbb{1}_{A}$ is the function

$$
\begin{aligned}
\mathbb{1}_{A}: \omega^{\omega} & \longrightarrow \omega^{\omega} \\
x & \longmapsto \begin{cases}\langle 1\rangle^{\omega} & \text { if } x \in A \\
\langle 0\rangle^{\omega} & \text { otherwise }\end{cases}
\end{aligned}
$$

Corollary 23.
The determinacy of $G_{\mathrm{B}}(f)$ for all $f: \omega^{\omega} \rightarrow \omega^{\omega}$ implies that every non-Borel subset of the Baire space has the perfect set property.

Corollary 24.
(ZFC) There exists a function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ such that $G_{B}(f)$ is undetermined.

On Borel reducibility

Definition 25.
For $A, B \subseteq \omega^{\omega}$, the game $G_{\mathrm{B}}(A, B)$ is a game with the same rules as the Borel game, but Player II wins if and only if

$$
x \in A \Longleftrightarrow \operatorname{Proj}(\text { unique branch of } T) \in B
$$

where x is the sequence played by Player I and T is the tree played by Player II.

On Borel reducibility

Definition 25.
For $A, B \subseteq \omega^{\omega}$, the game $G_{\mathrm{B}}(A, B)$ is a game with the same rules as the Borel game, but Player II wins if and only if

$$
x \in A \Longleftrightarrow \operatorname{Proj}(\text { unique branch of } T) \in B
$$

where x is the sequence played by Player I and T is the tree played by Player II.

Remark.
Given $A, B \subseteq \omega^{\omega}$, Player II has a winning strategy in $G_{B}(A, B)$ if and only if $A \leq_{B} B$, i.e. there exists a Borel function $f: \omega^{\omega} \rightarrow \omega^{\omega}$ such that $f^{-1}(B)=A$.

On Borel reducibility

$A D^{B}$

We denote with AD^{B} the statement "For all $A, B \subseteq \omega^{\omega}$, the game $G_{\mathrm{B}}(A, B)$ is determined".

On Borel reducibility

$A D^{B}$
We denote with AD^{B} the statement "For all $A, B \subseteq \omega^{\omega}$, the game $G_{\mathrm{B}}(A, B)$ is determined".
$A D^{B}$ implies the following statement:

$$
\text { for all } A, B \subseteq \omega^{\omega} A \leq_{\mathbf{B}} B \text { or } B \leq_{\mathbf{B}} \neg A
$$

which is called SLO^{B} and is sufficient (in (ZF $\left.+\mathrm{DC}\left(\omega^{\omega}\right)+\mathrm{BP}\right)$) to prove that \leq_{B} is well-founded and the structure of its equivalence classes is isomorphic to the one for the Wadge (continuous) reduction (see [Andretta and Martin, 2003]).

Conclusion

Open question.
What is the consistency strength of " $\operatorname{Det}\left(G_{\mathbf{B}}(f)\right)$ for all $f: \omega^{\omega} \rightarrow \omega^{\omega "}$? What is the relationship of such statement with other known determinacy statements?

Conclusion

Open question.
What is the consistency strength of " $\operatorname{Det}\left(G_{\mathbf{B}}(f)\right)$ for all $f: \omega^{\omega} \rightarrow \omega^{\omega "}$? What is the relationship of such statement with other known determinacy statements?

Open question.
What is the consistency strength of $A D^{B}$?

Conclusion

Open question.
What is the consistency strength of " $\operatorname{Det}\left(G_{\mathbf{B}}(f)\right)$ for all $f: \omega^{\omega} \rightarrow \omega^{\omega "}$? What is the relationship of such statement with other known determinacy statements?

Open question.
What is the consistency strength of $A D^{B}$?

Open question (see [Andretta, 2006]).
$\left(\mathrm{ZF}+\mathrm{DC}\left(\omega^{\omega}\right)+\mathrm{BP}\right)$ Does SLO $^{\mathrm{B}} \Longleftrightarrow \mathrm{AD}^{\mathrm{B}} \Longleftrightarrow$ SLO W hold?

Conclusion

Open question.
What is the consistency strength of " $\operatorname{Det}\left(G_{\mathbf{B}}(f)\right)$ for all $f: \omega^{\omega} \rightarrow \omega^{\omega "}$? What is the relationship of such statement with other known determinacy statements?

Open question.
What is the consistency strength of $A D^{B}$?

Open question (see [Andretta, 2006]).
$\left(\mathrm{ZF}+\mathrm{DC}\left(\omega^{\omega}\right)+\mathrm{BP}\right)$ Does SLO $^{\mathrm{B}} \Longleftrightarrow \mathrm{AD}^{\mathrm{B}} \Longleftrightarrow$ SLO W hold?

Thank you for the attention

References I

E Andretta, A. (2003).
Equivalence between Wadge and Lipschitz determinacy.
Ann. Pure Appl. Logic, 123(1-3):163-192.
R Andretta, A. (2006).
More on Wadge determinacy.
Ann. Pure Appl. Logic, 144(1-3):2-32.
直 Andretta, A. (2007).
The SLO principle and the Wadge hierarchy.
In Foundations of the formal sciences V, volume 11 of Stud. Log. (Lond.), pages
1-38. Coll. Publ., London.
國 Andretta, A. and Martin, D. A. (2003).
Borel-Wadge degrees.
Fund. Math., 177(2):175-192.
Carroy, R. (2014).
Playing in the first Baire class.
MLQ Math. Log. Q., 60(1-2):118-132.

References II

Kechris, A. S. (1995).
Classical Descriptive Set Theory.
Springer.
R Nobrega, H. (2018).
Games for functions: Baire classes, Weihrauch degrees, transfinite computations, and ranks.
PhD thesis, Amsterdam: Institute for Logic, Language and Computation.
Saint-Raymond, J. (1976).
Espaces à modèle séparable.
Ann. Inst. Fourier (Grenoble), 26(3):xi, 211-256.
Remmes, B. (2009).
A game for the Borel functions.
PhD thesis, Amsterdam: Institute for Logic, Language and Computation.

